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Review



Hidden Markov models

- Belief network

. . . observations o € {1,2,...,m}
g—é—é— —»é; states st € {1,2,...,n}

- Parameters
aj = P(Stz1=J|St=i) transition matrix
bir = P(Or=R|St=1) emission matrix
7 = P(S1=1) initial state distribution
- Notation

Sometimes we'll write b;j(R) = bj, to avoid double
subscripts.
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Key computations in HMMs

1. How to compute the likelihood P(04,0,,...,07)?

2. How to compute the most likely hidden states argmaxz P(5|0)?

3. How to update beliefs by computing P(s¢|01, 02, ..., 0¢)?

How to estimate parameters {m;, a;, bir} that maximize the
log-likelihood of observed sequences?
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Forward Algorithm

For a particular sequence of observations {01,05,...,071},
define the matrix with elements:

Qi@ e T QT

(,Y,t — P(O’]/ 02/ o Ot, S’[:I) o u.zw (\.zz (xz.wa u.zT

an n2 e Qn, T—1 nT

The forward algorithm fills in the matrix of a;; elements one
column at a time:

ap = mbi(or)

n
Qi = Y aia;bi(0r)
=
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Computing the likelihood P(04, 0, . . .,

n rows

P(O1,02, .

Sum!
11 || Q12 ap7-1 |[ear
a1 || 2 az T-1 || ear
xnl A n2 An, T—1 opT
,07)
n
> P(01,0,,...,07,57=1) ’ marginalization
P
n
> i [sum of last column]
=
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- Two hidden states (Weather): {H, C}

- Observations (Ice creams): {1,2,3}

By

[P(1 | COLD)] [5]
P@|coLp)| = | .4
P@|cop)| |.1

B,

P(1 | HOT) 2
PE|HOT) [ = |4
P(3 | HOT) 4

"Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
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Example - Forward Algorithm

an = mbi(o)

Qjty = Zata// (0t11)

@,(2)=.32 @,(2)=.32".12 + .02".1 = .0404

N P(HIH) * P(11H)
N (C//y 6*.2

e (7/0) RN e
Q@\ a ) = 02 ,?\\\\)\\ 0,(1) = .32*.2 + .02 25°=_069
Ay DS WO 2 L
Fe N P(CIC) P(1IC) e
N Q$ @)
. &
QA
S
04 0, 03

y
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Viterbi Algorithm

{s7,85,...,S7}
= argmaxs s, . s P(S1,52, ...,S57|01,02, ..., OT)
= argmaxs s, o 0gP(S1,52,...,57,01,02,...,07)

For a particular sequence of observations {04,0,,...,07}, we
define the following matrix:

ﬁ/*t = Swsrz‘naét 1|OgP(S1,52,...,St,1,StZI‘,O1,OQ,...,Ot)
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Viterbi Algorithm

We compute the matrix /* one column at a time, from left to

right:
0; = logm;+ logbj(or)
ﬁt+w = max {E,*t + log a,»,} + log bj(0t41)
" 1| |42 8| [T -|
61| |43 611 |67
n rows ) . . -
o1 o bhr—1] |far
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Example - Viterbi (Fill ¢*)

(12)=32 (J(2)= max(.32".12, .02*.10) = .038
P(HIH) * P(11H
\Hy Ao ¢ )*2( ) Sommmmmmmmm e @
” "
4+ 0 N
Lo \\\ L
S @ £2(1) = max(.32" 20; 102":25) = 064
€ ow=02 o™ 2(1) = max(.32".20].02:25) = .
Toh £ __P(CIC) * P(1IC) e
NSRS o) 5*5
&
\QS‘;: N
01 ()2 03

\/
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Computing {st,s5,...,s%}

- Form one more matrix:

®iq(j) = arg max; [Eﬁ + log a,—,—]

- Compute the most likely states by backtracking:

ST = argmax; [ETT}

fort=T—-1to01

St = Peya(Siys)
end
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Summary of Viterbi algorithm

- Fill #* matrix from left to right:
t=1 0 = logmj+ logbj(01)
G = max [E,*t + log a,'j} + log bj(0t11)
- Backtrack through ¢* from right to left:
S} = argmax; {ﬁ?}]
S; = argmax; [@Tt + log CI,—S;«H}

Sometimes {s},s5,...,s7} is called the Viterbi path.
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Example - Viterbi (Backtrack through ¢*)

(i=382 __-- =~ o _ (32=max(32"12, .02".10) =.038

n P(HIH) *PAIH) _ o\ @
/’ - * . \\\
. /// (C//7’) »p(’ 6*.2 - L
-7 \ 2 (1 S I
-7 - Y \ C}\ T
\ Pats
7 Q§ N \ o\'?\\Y\ 3 = max(:32",20; 02%25) = .064
R L
VN Fe \___P(CIC)* P(1IC) e
W g 6 SO 5t -
\ e R
\ 2 /
\ \%@&» N /7
Q\o v /
/
~ - ’//
04 0, O3
t

15/ 37



Learning in HMMs




Learning in HMMs

333 3

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.

Goal: estimate {m;, aj;, bjr} to maximize P(01,0z,...,071),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
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How do we estimate {r;, aj, bjr}?

EM Algorithm!
How EM works in general:

To re-estimate P(X;j=x|pa;=m) in the M-step,
we must compute P(X;=x, pa;=m|V) in the E-step.
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EM algorithm for HMMs

- CPTs to re-estimate:

7= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(Or=R|St=1)

- E-step in HMMs must compute:

P(S]—”O],Oz ..... OT) )

, _ special case of below (t=1)
P(Sty1=J,St=1]01,02, ..., or)
P(O:=R,S;=1|01,02,...,01) = (0, R)P(St=i|01,03,...,07)

’ How to efficiently compute these posteriors? ‘
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Computing P(S;=i|oq, ..., 07)

P(St:i,OW,Oz,...,OT)

P(S[:i|017...,OT) = P(OW o OT)
,00,...,

- Numerator

P(S:=1i,01,0,,...,07)

P(o1,...,0t,St=1) P(Ot41,...,07|St=1,01,...,0¢)
= P(01,...,01,St=1)P(0ts1,...,07|St=1) ’ conditional independence ‘
= ajP(0t41,. .., or|St=1)
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Backward Algorithm




We need one more matrix ...

Analogous to ajy = P(04,02,...,0¢t,St=1),
define ﬂiT = ’D(OTJHvOtJrZa'"7OT‘St:i)'
Bn P o Pir—1 BT
B Bn - Bor—1 Por
n rows . _ _ _ _

5m ﬁn2 ﬁn,T—W /jnT

Understand the differences between these matrices:
-« predicts observations up to and including time t.

- B predicts observations from time t + 1 to time T.
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|ST=1) What does this mean?

Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

Bir = 1 forall ie{1,2,...,n}
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Computing

= P(0t41, Ot42, -

- Previous columns (t < T)

ﬁl[

P(0t41, 0t42, - .., 07|St=1)

n

> [P(fa,r,/\st:f) -

j=1
P(ot1|St=1,5¢11=)) -

P(Ot42,...,07|St=1,5 ‘7,/,ot+1)} product rule
n
Z{P(» =St =1) P(0t11]S: 1 =)) P(0ts3, - - ., OF|S1 —/)]

j=1

Zau (0t+1) Bj 41
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:
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Learning in HMMs - EM Algorithm




Computing P(S;=i|os,

) P(S;=i,01,07,...,0
P(Sc=ilon....or) = PEZk0u0neeee )
) )ttty
- Numerator

P(S:=1i,01,04,...,07)

= P(Oj,. , Ot, St—l) (Ot+1,...,OT|St:i,O1,..4.,Ot)

= P(Oj, ..., 0, St = I) (Oprq, ey OT|St = I) ’ conditional independence ‘
= i P(0Ots1,- - -, or|St=1)
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ay(j) B()
-— —p

Ot-1 Ot Ot+1
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Computing P(S;=i|oq, ..., 07)

P(St:iao'\;o2a"'aOT)

P(Se=ilon,.. 0n) = ==
Y

- Numerator

P(St=1,01,0,...,07)

= P(Oj,...,Ot,st:i)P(Opﬂ,.‘.,OT|5t:I.,O1,....,Ot)

= P(Oj, ..., 0, St:I) P(Oprq, ey OT|St:i) ’ conditional independence ‘

= i Byt

- Denominator

P(Oj,Oz,...,OT) = E P(St:k,O'],Oz,...,OT)
R
= E Qlpt ﬂm by above l Note: this holds for all values of t. ‘
k
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St - i7 St+1 :ja 01, 02,

...,OT)
P(O1,02,....,OT)
—_————

already computed

P(St:i,St_H :j|017...707’) =

Express the numerator P(S;=1i,St1=J,01,0,,...,07) in terms
of a, 8, and parameters of the model g, b.
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Computing P(S;=1i,St,1=j|0;

P(St:f,st_H:j, Oq,...,OT) =7

How are you progressing?
A. Not sure where to start.
B. Making progress, but not there yet.
C. I got an answer, but | am not sure if it is right.
D. | finished and feel pretty confident about it.

E. | got lost and wandered off into virtual space.
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aijbj(9t+1) —
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Forward-backward algorithm for inference in HMMs

- Summary of E-step:

P(St:f|O1,...

P(St=1,Sty1=j]01, . ..

7OT)

7OT)

aijt Bit

> qjt Bt

@it Qjj bj(0t41) Bj 41

>k Okt Bt
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
aj = P(Str=JISt=1)
b, = P(O:=R|Si=1)
- M-step updates:
i«  P(S1=1i]01,02,...,071)

0 > P(Sts1=J,St=1]01,09, .. ., or7)
y S P(St=ilo1,00,. .., or)

> i 1(ot,R) P(St=il|01,0,,...,07)

b <« .
" >« P(St=il01,09,...,07)

(for one sequence of observations)
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What is the running time for each iteration of the update?

A. 0(n)

B
C. O
D
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Time complexity of HMM computations

T length of observation sequence (01,02, ...,07)
n cardinality of state space st € {1,2,...,n}
m cardinality of observation space o; € {1,2,...,m}

- All of the following computations are O(n’T):

(a) computing the likelihood P(01,0z,...,07)

(b) decoding argmaxs, s, P(S1,...,S7]01,...,071)
(c) re-estimating {m, ajj, bi,} by one update of EM
(d)

d) updating beliefs P(S¢=1|o1,...,0¢) for T steps
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That's all folks!

37/37



	Review
	Learning in HMMs
	Backward Algorithm
	Learning in HMMs - EM Algorithm

