
CSE 150A-250A AI: Probabilistic Models

Lecture 13
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 37

Agenda

Review

Learning in HMMs

Backward Algorithm

2 / 37

Review

Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot ∈ {1, 2, . . . ,m}

states st ∈ {1, 2, . . . ,n}

• Parameters

aij = P(St+1= j|St= i) transition matrix
bik = P(Ot=k|St= i) emission matrix
πi = P(S1= i) initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.

4 / 37

Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {πi,aij,bik} that maximize the
log-likelihood of observed sequences?

5 / 37

Forward Algorithm

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

αit = P(o1,o2, . . . ,ot, St= i) n rows




α11 α12 · · · α1,T−1 α1T
α21 α22 · · · α2,T−1 α2T
...

...
...

...
...

αn1 αn2 · · · αn,T−1 αnT



The forward algorithm fills in the matrix of αit elements one
column at a time:

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)

6 / 37

Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
n∑
i=1

P(o1,o2, . . . ,oT , sT= i) marginalization

=
n∑
i=1

αiT sum of last column

7 / 37

Example1

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.

8 / 37

Example - Forward Algorithm

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)

9 / 37

Viterbi Algorithm

{s∗1 , s∗2 , . . . , s∗T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)

= argmaxs1,s2,...,sT logP(s1, s2, . . . , sT ,o1,o2, . . . ,oT)

For a particular sequence of observations {o1,o2, . . . ,oT}, we
define the following matrix:

`∗it = max
s1,s2,...,st−1

log P(s1, s2, . . . , st−1, St= i,o1,o2, . . . ,ot)

10 / 37

Viterbi Algorithm

We compute the matrix `∗ one column at a time, from left to
right:

`∗i1 = log πi + log bi(o1)

`∗j,t+1 = max
i

[
`∗it + log aij

]
+ log bj(ot+1)

11 / 37

Example - Viterbi (Fill `∗)

12 / 37

Computing {s∗1 , s∗2, . . . , s∗T}

• Form one more matrix:

Φt+1(j) = argmaxi

[
`∗it + log aij

]

• Compute the most likely states by backtracking:

s∗T = argmaxi

[
`∗iT

] Max!

for t = T−1 to 1
s∗t = Φt+1(s∗t+1)

end

13 / 37

Summary of Viterbi algorithm

• Fill `∗ matrix from left to right:

t = 1 `∗i1 = log πi + log bi(o1)

t > 1 `∗j,t+1 = maxi

[
`∗it + log aij

]
+ log bj(ot+1)

• Backtrack through `∗ from right to left:

t = T s∗T = argmaxi

[
`∗iT

]
t < T s∗t = argmaxi

[
`∗it + log ais∗t+1

]

Sometimes {s∗1 , s∗2 , . . . , s∗T} is called the Viterbi path.

14 / 37

Example - Viterbi (Backtrack through `∗)

15 / 37

Learning in HMMs

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {πi,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st ∈ {1, 2, . . . ,n}

17 / 37

How do we estimate {πi,aij,bik}?

EM Algorithm!
How EM works in general:

To re-estimate P(Xi=x|pai=π) in the M-step,
we must compute P(Xi=x,pai=π|V) in the E-step.

18 / 37

EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)︸ ︷︷ ︸

How to efficiently compute these posteriors?

19 / 37

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit P(ot+1, . . . ,oT |St= i)

20 / 37

Backward Algorithm

We need one more matrix ...

Analogous to αit = P(o1,o2, . . . ,ot, St= i),
define βit = P(ot+1,ot+2, . . . ,oT |St= i).

n rows




β11 β12 · · · β1,T−1 β1T

β21 β22 · · · β2,T−1 β2T
...

...
...

...
...

βn1 βn2 · · · βn,T−1 βnT



Understand the differences between these matrices:
• αit predicts observations up to and including time t.
• βit predicts observations from time t + 1 to time T .

22 / 37

Computing βit = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)

βiT = P(|ST= i) What does this mean?

Note: βit computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

βiT = 1 for all i ∈ {1, 2, . . . ,n}
23 / 37

Computing βit = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

βit = P(ot+1, ot+2, . . . , oT |St= i)

=
n∑
j=1

P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
n∑
j=1

[
P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
]

product rule

=
n∑
j=1

[
P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

]
CI

=
n∑
j=1

aij bj(ot+1)βj,t+1 CPTs

24 / 37

Backward algorithm

The backward algorithm fills in the matrix of βit elements
one column at a time:

βiT = 1 for i ∈ {1, 2, . . . ,n}

βit =
n∑
j=1

aij bj(ot+1)βj,t+1

25 / 37

Learning in HMMs - EM Algorithm

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit P(ot+1, . . . ,oT |St= i)
= αit βit

27 / 37

Visually

28 / 37

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit βit

• Denominator

P(o1,o2, . . . ,oT) =
∑
k

P(St=k,o1,o2, . . . ,oT) marginalization

=
∑
k

αkt βkt by above Note: this holds for all values of t.

29 / 37

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)︸ ︷︷ ︸
already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of α, β, and parameters of the model a, b.

30 / 37

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j,o1, . . . ,oT) = ?

How are you progressing?

A. Not sure where to start.

B. Making progress, but not there yet.

C. I got an answer, but I am not sure if it is right.

D. I finished and feel pretty confident about it.

E. I got lost and wandered off into virtual space.

31 / 37

Visually

32 / 37

Forward-backward algorithm for inference in HMMs

• Summary of E-step:

P(St= i|o1, . . . ,oT) =
αit βit∑
j αjt βjt

P(St= i, St+1= j|o1, . . . ,oT) =
αit aij bj(ot+1)βj,t+1∑

k αkt βkt

33 / 37

EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

πi ← P(S1= i|o1,o2, . . . ,oT)

aij ←
∑

t P(St+1= j, St= i|o1,o2, . . . ,oT)∑
t P(St= i|o1,o2, . . . ,oT)

bik ←
∑

t I(ot, k)P(St= i|o1,o2, . . . ,oT)∑
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

34 / 37

Question

What is the running time for each iteration of the update?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT)

35 / 37

Time complexity of HMM computations

T length of observation sequence (o1,o2, . . . ,oT)
n cardinality of state space st ∈ {1, 2, . . . ,n}
m cardinality of observation space ot ∈ {1, 2, . . . ,m}

• All of the following computations are O(n2T):

(a) computing the likelihood P(o1,o2, . . . ,oT)

(b) decoding argmaxs1,...,sT P(s1, . . . , sT |o1, . . . ,oT)

(c) re-estimating {πi,aij,bik} by one update of EM

(d) updating beliefs P(St= i|o1, . . . ,ot) for T steps

36 / 37

That’s all folks!

37 / 37

	Review
	Learning in HMMs
	Backward Algorithm
	Learning in HMMs - EM Algorithm

