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Review



Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot ∈ {1, 2, . . . ,m}

states st ∈ {1, 2, . . . ,n}

• Parameters

aij = P(St+1= j|St= i) transition matrix
bik = P(Ot=k|St= i) emission matrix
πi = P(S1= i) initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.
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Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {πi,aij,bik} that maximize the
log-likelihood of observed sequences?
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Forward Algorithm

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

αit = P(o1,o2, . . . ,ot, St= i) n rows




α11 α12 · · · α1,T−1 α1T
α21 α22 · · · α2,T−1 α2T
...

...
...

...
...

αn1 αn2 · · · αn,T−1 αnT



The forward algorithm fills in the matrix of αit elements one
column at a time:

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)
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Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
n∑
i=1

P(o1,o2, . . . ,oT , sT= i) marginalization

=
n∑
i=1

αiT sum of last column
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Example1

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
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Example - Forward Algorithm

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)
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Viterbi Algorithm

{s∗1 , s∗2 , . . . , s∗T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)

= argmaxs1,s2,...,sT logP(s1, s2, . . . , sT ,o1,o2, . . . ,oT)

For a particular sequence of observations {o1,o2, . . . ,oT}, we
define the following matrix:

`∗it = max
s1,s2,...,st−1

log P(s1, s2, . . . , st−1, St= i,o1,o2, . . . ,ot)
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Viterbi Algorithm

We compute the matrix `∗ one column at a time, from left to
right:

`∗i1 = log πi + log bi(o1)

`∗j,t+1 = max
i

[
`∗it + log aij

]
+ log bj(ot+1)
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Example - Viterbi (Fill `∗)
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Computing {s∗1 , s∗2, . . . , s∗T}

• Form one more matrix:

Φt+1(j) = argmaxi

[
`∗it + log aij

]

• Compute the most likely states by backtracking:

s∗T = argmaxi

[
`∗iT

] Max!

for t = T−1 to 1
s∗t = Φt+1(s∗t+1)

end

13 / 37



Summary of Viterbi algorithm

• Fill `∗ matrix from left to right:

t = 1 `∗i1 = log πi + log bi(o1)

t > 1 `∗j,t+1 = maxi

[
`∗it + log aij

]
+ log bj(ot+1)

• Backtrack through `∗ from right to left:

t = T s∗T = argmaxi

[
`∗iT

]
t < T s∗t = argmaxi

[
`∗it + log ais∗t+1

]

Sometimes {s∗1 , s∗2 , . . . , s∗T} is called the Viterbi path.
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Example - Viterbi (Backtrack through `∗)
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Learning in HMMs



Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {πi,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st ∈ {1, 2, . . . ,n}
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How do we estimate {πi,aij,bik}?

EM Algorithm!
How EM works in general:

To re-estimate P(Xi=x|pai=π) in the M-step,
we must compute P(Xi=x,pai=π|V) in the E-step.
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EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)︸ ︷︷ ︸

How to efficiently compute these posteriors?
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Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit P(ot+1, . . . ,oT |St= i)
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Backward Algorithm



We need one more matrix ...

Analogous to αit = P(o1,o2, . . . ,ot, St= i),
define βit = P(ot+1,ot+2, . . . ,oT |St= i).

n rows




β11 β12 · · · β1,T−1 β1T

β21 β22 · · · β2,T−1 β2T
...

...
...

...
...

βn1 βn2 · · · βn,T−1 βnT



Understand the differences between these matrices:
• αit predicts observations up to and including time t.
• βit predicts observations from time t + 1 to time T .
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Computing βit = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)

βiT = P( |ST= i) What does this mean?

Note: βit computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

βiT = 1 for all i ∈ {1, 2, . . . ,n}
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Computing βit = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

βit = P(ot+1, ot+2, . . . , oT |St= i)

=
n∑
j=1

P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
n∑
j=1

[
P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
]

product rule

=
n∑
j=1

[
P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

]
CI

=
n∑
j=1

aij bj(ot+1)βj,t+1 CPTs
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Backward algorithm

The backward algorithm fills in the matrix of βit elements
one column at a time:

βiT = 1 for i ∈ {1, 2, . . . ,n}

βit =
n∑
j=1

aij bj(ot+1)βj,t+1
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Learning in HMMs - EM Algorithm



Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit P(ot+1, . . . ,oT |St= i)
= αit βit
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Visually
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Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= αit βit

• Denominator

P(o1,o2, . . . ,oT) =
∑
k

P(St=k,o1,o2, . . . ,oT) marginalization

=
∑
k

αkt βkt by above Note: this holds for all values of t.
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Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)︸ ︷︷ ︸
already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of α, β, and parameters of the model a, b.
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Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j,o1, . . . ,oT) = ?

How are you progressing?

A. Not sure where to start.

B. Making progress, but not there yet.

C. I got an answer, but I am not sure if it is right.

D. I finished and feel pretty confident about it.

E. I got lost and wandered off into virtual space.
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Visually
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Forward-backward algorithm for inference in HMMs

• Summary of E-step:

P(St= i|o1, . . . ,oT) =
αit βit∑
j αjt βjt

P(St= i, St+1= j|o1, . . . ,oT) =
αit aij bj(ot+1)βj,t+1∑

k αkt βkt
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EM algorithm for HMMs

• CPTs to re-estimate:

πi = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

πi ← P(S1= i|o1,o2, . . . ,oT)

aij ←
∑

t P(St+1= j, St= i|o1,o2, . . . ,oT)∑
t P(St= i|o1,o2, . . . ,oT)

bik ←
∑

t I(ot, k)P(St= i|o1,o2, . . . ,oT)∑
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)
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Question

What is the running time for each iteration of the update?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT )
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Time complexity of HMM computations

T length of observation sequence (o1,o2, . . . ,oT)
n cardinality of state space st ∈ {1, 2, . . . ,n}
m cardinality of observation space ot ∈ {1, 2, . . . ,m}

• All of the following computations are O(n2T):

(a) computing the likelihood P(o1,o2, . . . ,oT)

(b) decoding argmaxs1,...,sT P(s1, . . . , sT |o1, . . . ,oT)

(c) re-estimating {πi,aij,bik} by one update of EM

(d) updating beliefs P(St= i|o1, . . . ,ot) for T steps
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That’s all folks!
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